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Abstract The quasi-geostrophic omega equation has been used extensively to examine the large-scale
vertical velocity patterns of atmospheric systems. It is derived from the quasi-geostrophic equations, a
balanced set of equations based on the partitioning of the horizontal wind into a geostrophic and an
ageostrophic component. Its use is limited to higher latitudes, however, as the geostrophic balance is
undefined at the equator. In order to derive an omega equation which can be used at all latitudes, a new
balanced set of equations is developed. Three key steps are used in the formulation. First, the horizontal
wind is decomposed into a nondivergent and an irrotational component. Second, the Coriolis parameter is
assumed to be slowly varying, such that it may be moved in and out of horizontal derivative operators as
necessary to simplify the derivation. Finally, the mass field is formulated from the nondivergent wind field.
The resulting balanced set of equations and the omega equation derived from them take a similar form to
the quasi-geostrophic equations, yet are valid over the whole sphere. A method of solution to the global
omega equation using vertical normal modes and spherical harmonics is presented, along with a
middle-latitude and low-latitude example.

Plain Language Summary Most high impact weather occurs where the atmosphere is experienc-
ing rising motion. Vertical motions can occur on a variety of scales, and this paper explores the upward and
downward currents on length scales typical of extratropical cyclones and tropical waves. A commonly-used
tool for evaluating such motions is the quasi-geostrophic omega equation. The quasi-geostrophic omega
equation is typically formulated using a constant Coriolis parameter, which limits the latitudinal extent of its
application. In this paper, an omega equation is derived which is valid over the whole sphere. A method for
solution of the new global omega equation is presented, one which employs a normal mode transform in
the vertical, and a spherical harmonic transform in the horizontal. Examples of the application of the global
omega equation are given for both a midlatitude cyclone as well as a tropical wave.

1. Introduction

Quasi-geostrophic theory has been vastly used in the atmospheric sciences. Originally derived by Charney
(1948), this description of fluid motion is formulated from a scale analysis of the primitive equations that
retains only those motions characterized by a small Rossby number and for which the vertical scale is small
compared to the horizontal scale. In this system, the horizontal velocity is decomposed into a geostrophic
component and an ageostrophic component. The ageostrophic component is assumed to be smaller in
magnitude than the geostrophic component and is neglected in many, but not all, terms—thus the name
quasi-geostrophic. This set of equations is complex enough to contain many of the detailed structures
present in the atmosphere, yet simple enough that analytical solutions may be found in many of its
applications.

While frequently employed in the analysis of midlatitude weather systems in an f or b-plane configuration,
the quasi-geostrophic system has seen little use in the Tropics because the geostrophic wind becomes
unrealistically large at low latitudes and is undefined altogether at the equator. Thus, quasi-geostrophic the-
ory is frequently applied to higher latitude features such as extratropical cyclones, the propagation of plane-
tary waves, turbulence, and the stability of jet streams, but has seen limited use in the study of low-latitude
phenomena such as tropical waves and tropical cyclones. In addition, processes which occur over a wide
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latitude range, such as the transition of a tropical cyclone to an extratropical cyclone are difficult to study
with quasi-geostrophic theory, again owing to the inaccuracy of the geostrophic approximation at low
latitudes.

In order to describe features occurring at any latitude, or over a wide range of latitudes, a global ‘‘quasi-
geostrophic’’ theory is necessary. Although perhaps not well known, Kuo (1959) and Charney and Stern
(1962) formulated such a theory over a half-century ago. Essential to this formulation is the decomposition
of the horizontal wind field not into geostrophic and ageostrophic components, but rather into nondiver-
gent and irrotational components. From there, approximations similar to those made in quasi-geostrophic
theory are applied to the primitive equations to arrive at a balanced system which is valid for the whole
sphere. Not surprisingly, this system of equations is very similar to the system of equations governing
quasi-geostrophic motions, and applying the equations to the analysis of the atmosphere proceeds along
the same path. In particular, the vorticity equation can be combined with the thermodynamic equation in
one of two ways. The first approach is to eliminate the vertical motion between the two equations, resulting
in a single equation governing the time tendency of the streamfunction. From this equation, the potential
vorticity and the conditions of its conservation can be defined. This approach was taken by Schubert et al.
(2009) and Verkley (2009) in the context of a shallow-water system. The work presented here takes the alter-
nate approach to combining the vorticity equation and the thermodynamic equation. In this combination,
the time tendency of the streamfunction is eliminated between the two equations. The result is a second-
order, linear, partial differential equation describing the vertical motion field which accompanies the bal-
anced flow—the global omega equation. This paper examines the global omega equation, including its der-
ivation, the governing boundary conditions, and a description of its solution, which involves a normal mode
transform in the vertical and a spherical harmonic transform in the horizontal. Before the omega equation is
discussed, however, the system of equations from which it is derived is developed.

2. Balance Theory on the Sphere

2.1. Considerations in Extending Quasi-Geostrophic Theory to the Sphere
In order to derive an omega equation applicable to the entire sphere, a set of equations governing a bal-
anced flow on the sphere must be developed. Quasi-geostrophic theory relies on the decomposition of the
horizontal velocity into a geostrophic and an ageostrophic component. In this decomposition, there are
two ways to define the geostrophic wind (Blackburn, 1985). The first is to replace the Coriolis parameter, f,
with a constant, f0, associated with a particular latitude. While such an assumption is often used in midlati-
tude studies, it is hardly appropriate to consider one value for the Coriolis parameter as applicable to the
entire Earth. The second option is to retain the latitudinal variation in f in the definition of the geostrophic
wind. This option cannot be applied to low latitudes, however, as the geostrophic balance breaks down due
to the decrease in magnitude of the Coriolis parameter, resulting in a singularity at the equator where f 5 0.
Therefore, an approach alternate to geostrophic balance is needed.

Bluestein (1992) notes that, for large-scale midlatitude flows, the divergence can be up to an order of mag-
nitude smaller than the relative vorticity. In his analysis, Charney (1963) reports that large-scale flows in the
Tropics are also characterized by a small value of divergence. A balance theory relying on the assumption of
the approximate nondivergence of the horizontal wind is therefore better suited to global motions than a
theory based on geostrophic balance of the horizontal winds. This approach to obtaining a global balance
theory was used by Kuo (1959) and Charney (1960). Schubert et al. (2009) and Verkley (2009) recently revis-
ited the topic, examining the behavior of balanced, shallow-water Rossby waves on the sphere. The balance
theory on the sphere will be based on the decomposition of the horizontal wind into nondivergent and irro-
tational components. The derivation proceeds, however, using similar scaling arguments applied by Char-
ney (1948) and Phillips (1963) to midlatitude quasi-geostrophic theory.

2.2. From the Primitive Equations to the Balanced System
With pressure as the vertical coordinate, the dry, adiabatic, hydrostatic, primitive equations obeying the
ideal gas law may be written as

D3v
Dt

1f k3v1rU5F (1)
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where f 52Xl is the Coriolis parameter, with X the rotation rate of the Earth and l the sine of the latitude.
D3
Dt� @

@t 1v � r1x @
@p is the total derivative.

The above equations describe the relationship among the dependent variables v, x, U, T, and C, which are
all functions of the independent variables r, p, and t, where r5 ki;ljð Þ is a horizontal position vector with
longitude k, p is pressure, and t is time. A vector representing the effects of boundary layer friction, F, has
been included in the horizontal momentum equation. In midlatitude studies, this term is often neglected
because of the strength of the quasi-geostrophic forcing. In the Tropics, however, the quasi-geostrophic
effects are much weaker, even to the point of being equaled or surpassed in magnitude by the frictional
contribution (Baumhefner, 1968; Krishnamurti, 1968). The frictional term has therefore been retained in the
equations of motion.

In order to derive the equations governing a balance theory on the sphere, approximations to the primitive
equations will be made which isolate the features characterized by a vertical scale which is small compared
to the horizontal scale and having a small Rossby number. In particular, the momentum equations and the
thermodynamic equation will be modified.

Before applying the necessary approximations to the momentum equation (1) to arrive at the balanced sys-
tem, it is convenient to replace it with equations governing the divergence and the vertical component of
the vorticity of the flow. These equations are derived, respectively, by taking r� and k � r3 of the momen-
tum equation (1):

@d
@t

1r2 U1
1
2

v � v
� �

2f f1fð Þ1v � r f1fð Þ3k1x
@d
@p

1rx � @v
@p

5r � F

and

D3 f1fð Þ
Dt

2 f1fð Þ @x
@p

1k � rx3
@v
@p

� �
5k � r3F;

where d5r � v is the divergence of the horizontal wind field, and f5k � r3v is the vertical component of
the isobaric relative vorticity.

Decomposing the horizontal wind field into nondivergent and irrotational components allows the horizon-
tal wind vector to be written as v5vw1vv. The nondivergent wind is given by vw5k3rw, where w is the
streamfunction, and the irrotational wind is given by vv5rv, where v is the velocity potential. The vertical
component of the relative vorticity is then f5r2w, and the divergence of the horizontal wind is given by
d5r2v, with r � vw50 and r3vv50.

The approximate form of the divergence equation ultimately defines the balance assumed by the system—
nonlinear balance, linear balance, or geostrophic balance. By neglecting in the divergence equation terms
involving the irrotational wind component, the term rx � @v

@p, the friction term, and the nonlinear terms, the
balance theory on the sphere begins with the linear balance:

r2U2r � frwð Þ50: (6)

By considering f to be a slowly varying function of latitude in comparison to w, it can be moved into the gra-
dient operator in (6). Thus, the balance equation can be written as r2 U2f wð Þ50. The solution to this equa-
tion on a sphere is U2f w5C, where C is a constant. This equation holds for each isobaric surface, but as will
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be discussed subsequently, C must be set to the base-state geopotential of the isobaric surface. The final
version of the balance equation becomes

fw k; l; pð Þ5U k; l; pð Þ2 �U pð Þ; (7)

where �U pð Þ is the base-state geopotential which is related to the base-state temperature profile through
the hydrostatic equation. Thus, the Coriolis parameter maintains its full latitudinal variation, but the balance
condition will not be valid for motions with large meridional extent. In comparing the Rossby-Haurwitz
wave frequencies of the shallow-water version of the global balance theory with those derived from the
primitive equations, Schubert et al. (2009) found excellent agreement in all cases but the sectoral harmon-
ics, i.e., harmonics with low meridional wavenumber.

Equation (7) describes merely the relationship between the temperature, or mass, field (U) and the wind, or
momentum, field (w). It does not require that either the mass field or the momentum field be the indepen-
dent variable. Phillips (1958) explored the two options in the context of numerical weather prediction, using
a midlatitude cyclone over the eastern United States as an example. He came to the conclusion that it is
more important to have an estimate of the wind field, and from that derive the associated temperature field
than it is to have an estimate of the temperature field, and from that derive the wind field. More recent
work on this idea of ‘‘slaving’’ and ‘‘slaved’’ variables can be found in Warn et al. (1995), Mohebalhojeh
(2002), and Nielsen-Gammon and Gold (2008).

Although Phillips’ domain covered only a portion of the midlatitudes, one might consider a verification of
his conclusion to be borne out for the global balance theory by examining (7). If the balance is constructed
by determining the streamfunction from the geopotential field, then w5

U k;l;pð Þ2 �U pð Þ
f , which is indeterminate

or singular at the equator, depending on how �U pð Þ is defined. If, on the other hand, the balance is con-
structed by determining the geopotential field from the streamfunction, no such problem exists. It does
however require that, along the equator, the geopotential field is equal to the base-state geopotential for
each pressure level, so that the geopotential perturbations are identically zero.

The vorticity equation will be approximated by neglecting the horizontal advection of absolute vorticity by
the irrotational component of the wind, the vertical advection of absolute vorticity, the stretching of the rel-
ative vorticity, and the twisting term (Kuo, 1959). The new vorticity equation is then given by

D r2w1fð Þ
Dt

2f
@x
@p

5k � r3F;

where D
Dt 5 @

@t 1vw � r is the total derivative following the nondivergent component of the balanced wind.
This form of the vorticity equation is consistent with Cases I and II of Charney (1960), only he includes the
advection of the planetary vorticity by the irrotational wind and neglects friction.

The thermodynamic equation will also be approximated following the arguments listed in Kuo (1959). The
horizontal advection of T by the irrotational component of the flow is neglected, and the static stability C is
replaced with a base-state static stability that is a function of pressure only �C5 R�T

cp
2p d�T

dp

� �
. With these

changes the thermodynamic equation becomes

DT
Dt

2
�C
p

x50: (8)

In formulating the omega equation, it is convenient to replace the temperature in the total derivative with
an expression involving the streamfunction. This is accomplished through the use of the hydrostatic equa-
tion along with the balance condition. The thermodynamic equation becomes:

D f @w@p

� �
Dt

1
R �C
p2

x50:

2.3. The Balanced System of Equations
With the approximations to the primitive equations made, and with r2v replacing r � v in the continuity
equation, the balanced theory on the sphere may be presented:
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Global Balance Theory

fw5U2�U (9)
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x50 (13)

vw5k3rw: (14)

2.4. The Thermal Wind Relationship
The derivation of the associated thermal wind relation, which will be used in the construction of the global
omega equation, begins with the balance condition

f w5U2 �U:

Operating with @/@p and using @U/@p52a and d �U/dp52�a gives

f
@w
@p

52 a2�að Þ: (15)

Applying the assumption of a slowly varying f, and operating with k3r on the above equation results in
the thermal wind equation for the balance theory on the sphere:

f
@vw

@p
52k3ra: (16)

3. The Omega Equation

3.1. Derivation
The omega equation is a diagnostic equation describing the large-scale vertical motion of the atmosphere,
and is derived by eliminating the streamfunction tendency term from the vorticity and thermodynamic
equations. As with the midlatitude omega equation, the global omega equation can be written in two
ways, depending on the form of the forcing. The first, or traditional, form has the forcing divided into a vor-
ticity component and a thermal component. In the second form, the forcing is written in terms of the so-
called Q vector.

In order to eliminate the streamfunction tendency from the balanced vorticity equation and the balanced
thermodynamic equation, (10) is operated on with @

@p after multiplying by –f, then added to r2 of (13). The
result is

R �C
p2
r2x1f 2 @

2x
@p2

5
@

@p
f vw � r f1fð Þ
� �

2r2 f vw � r
@w
@p

� �� 	

2
@

@p
f k � r3Fð Þ:

(17)

If friction is neglected and wg5 U
f0

is the geostrophic streamfunction, equation (17) is analogous to the fric-
tionless, midlatitude quasi-geostrophic omega equation:
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R �C
p2
r2x1f 2

0
@2x
@p2

5
@

@p
f0vg � rðfg1f Þ
� �

2r2 f0vg � r
@wg

@p

� �� 	
: (18)

In comparing (17) with (18), it can be seen that the forms of the two omega equations are identical—with a
3-D, Laplacian-type operator on the left-hand side, forced on the right-hand side by two terms (when fric-
tion is neglected). The first is the vertical derivative of the advection of the absolute vorticity. The second is
the Laplacian of the advection of the vertical derivative of the streamfunction. By the hydrostatic equation,
this derivative is proportional to the temperature. Large-scale vertical motions on the sphere, then, are
forced by the same mechanisms by which large-scale vertical motions at midlatitudes are forced—by differ-
ential cyclonic vorticity advection and the Laplacian of the thermal advection.

In addition to the similarities, two differences can be seen. The advections are accomplished in (18) by the
geostrophic wind, but by the nondivergent wind in (17). In the midlatitude form, the Coriolis parameter
assumes a constant value, f0, except in the vorticity advection term. In the global omega equation, the Cori-
olis parameter retains its full variability. The complete range of values, however, includes f 5 0 at the equa-
tor, in which case (17) indicates that the forcing vanishes.

Similar to the quasi-geostrophic omega equation, the forcing of the global omega equation may also be
written in the form of a vector, Q. Using the slowly varying f approximation, the first two terms on the right-
hand side of (17) can be written as:

f
@

@p
vw � r f1fð Þ
� �

2r2 vw � r
@w
@p

� �� 	
 �
:

Since vw is nondivergent, the advection by vw of the absolute vorticity is equal to the divergence of the vor-
ticity flux, that is, vw � r f1fð Þ5r � vw f1fð Þ

� �
. Making this substitution and manipulating the vertical deriv-

ative, the inner product, and gradient operators, the forcing term becomes

fr � @

@p
vw f1fð Þ
� �

2r vw �
@

@p
rwð Þ

� 	
 �
:

The term inside the second set of brackets can be rewritten as vw � @@p rwð Þ5 @
@p vw � rw
� 


2
@vw

@p � rw: Because

vw5k3rw is perpendicular torw; vw � rw50, from which it follows that vw � @@p rwð Þ52
@vw

@p � rw: The forc-

ing term for the omega equation can then be written as:

fr � @

@p
vw f1fð Þ
� �

1r @vw

@p
� rw

� �
 �
:

Using the identity r A � Bð Þ5 A � rð ÞB1 B � rð ÞA1A3 r3Bð Þ1B3 r3Að Þ on the second term and noting
that rw3 r3

@vw

@p

� �
5rw3 @f

@p k52 @f
@p vw gives

fr � @

@p
½vwðf1f Þ�1 @vw

@p
� r

� �
rw1 rw � rð Þ @vw

@p
2
@f
@p

vw


 �
:

Expanding the first term and adding @vw

@p � r
� �

rw2
@vw

@p � r
� �

rw50 gives

fr � 2
@vw

@p
� r

� �
rw1f

@vw

@p
1f

@vw

@p
1 rw � rð Þ @vw

@p
2

@vw

@p
� r

� �
rw

� 	
:

Using the identity r3 A3Bð Þ5Ar � B2Br � A1 B � rð ÞA2 A � rð ÞB, the last three terms can be combined
to give r3

@vw

@p 3rw
� �

. Using this in the forcing term gives

fr � 2
@vw

@p
� r

� �
rw1f

@vw

@p
1r3

@vw

@p
3rw

� �� 	
:

Using the result r � r3
@vw

@p 3rw
� �h i

50, the forcing takes the form

fr � 2
@vw

@p
� r

� �
rw1f

@vw

@p

� 	
;

or
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fr � 2
@vw

@p
� r

� �
rw

� 	
1fr � f

@vw

@p

� �
:

Up to this point, the derivation has been independent of any coordinate system. To continue the derivation,
however, spherical coordinates will be assumed. Expanding rw in spherical coordinates and using the
assumption of a slowly varying f, the first term of the above equation may be written as

2r � f
@vw

@p
� r

� �
vwi2uwj
� 
� 	

or equivalently,

22r � 2 f
@vw

@p
� r

� �
vwi2uwj
� 
� 	

:

If the product @vw

@p � r is expanded and operates on vwi2uwj, the result is

Q5 Q1;Q2;Q3ð Þ52f
@uw

@p

� �
@vw

acos /@k
1

uwtan /
a

� �
1

@vw

@p

� �
@vw

a@/

� �� 	
i

2f
@uw

@p

� �
2

@uw

acos /@k
1

vwtan /
a

� �
2

@vw

@p

� �
@uw

a@/

� �� 	
j

2f 2
@uw

@p

� �
vw

a

� �
1

@vw

@p

� �
uw

a

� �� 	
k:

(19)

Here the variation with latitude and longitude of the unit vectors i and j has been taken into account, that
is, @i

acos /@k 5 tan /
a j2 1

a k; @i
a@/ 50, @j

acos /@k 52 tan /
a i, and @j

a@/ 52 1
a k, where a is the radius of the Earth (Holton,

1992). In addition, because r has been defined to be a horizontal operator, equation (19) implies that the
component of Q in the k direction may be removed from further consideration.

Q is a generalized form of that discussed by Hoskins et al. (1978). It can also be written using only horizontal
derivative operators through the use of the components of the thermal wind equation f @uw

@p 5 @a
a@/ and

f @vw

@p 52 @a
acos /@k. Using these relations in (19) gives

Q152
@a

a@/

� �
@vw

acos /@k
1

uwtan /
a

� �
2

@a
acos /@k

� �
@vw

a@/

� �� 	
(20)

and

Q252
@a

a@/

� �
2

@uw

acos /@k
1

vwtan /
a

� �
1

@a
acos /@k

� �
@uw

a@/

� �� 	
: (21)

Q1 and Q2 may now be computed using variables at only one level. The terms uwtan /
a and vwtan /

a , however,
present a difficulty as tan / is unbounded at the poles. To avoid singularities at the poles, the definition of
vorticity and divergence will be used to eliminate these terms in the definitions of Q1 and Q2, respectively.

The equation for the vertical component of the relative vorticity may be written as

f5
@vw

a cos /@k
2
@ uwcos /
� 


a cos /@/
5

@vw

a cos /@k
2
@uw

a@/
1

uwtan /
a

:

Using this result in (20) gives

Q152
@a

a@/

� �
@uw

a@/
1f

� �
2

@a
a cos /@k

� �
@vw

a@/

� �� 	
: (22)

The 2-D divergence of vw is

d5
@uw

a cos /@k
1
@ vwcos /
� 


a cos /@/
50:

Expanding the second term, the above equation becomes
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@uw

acos /@k
1
@vw

a@/
2

vwtan /
a

:

Using this result in (21) gives

Q252
@a

a@/

� �
@vw

a@/

� �
1

@a
acos /@k

� �
@uw

a@/

� �� 	
: (23)

The Q form of the omega equation can now be written as

R �C
p2
r2x1f 2 @

2x
@p2

522r � Q1fr � f
@vw

@p

� �
:

The second term is typically of the same order of magnitude as 22r � Q, and so will be retained (Blackburn,
1985). This term may also be written in terms of variables on a single level through the use of the thermal
wind equation (16):

fr � f
@vw

@p

� �
5fr � 2k3rað Þ:

Returning friction to the forcing, the Q form of the omega equation can then be written as

R �C
p2
r2x1f 2 @

2x
@p2

522r � Q2fr � k3rað Þ2 @

@p
f k � r3Fð Þ: (24)

3.2. Boundary Conditions
In order to solve a partial differential equation, the boundary conditions must be stated. To solve the omega
equation (17) or (24), the atmosphere is considered to be bounded by two isobaric surfaces, p 5 pB and
p 5 pT. At p 5 pT, x is chosen to be zero, meaning that air parcels do not cross the upper boundary. At the
lower boundary, it is assumed that parcels do not cross physical height surfaces, so, D3 z

Dt is chosen to be zero
at p 5 pB. In practice, the condition on the lower boundary will be written in terms of the geopotential
U5gz, so that g D3z

Dt 5 D3U
Dt 50, where g is the acceleration due to gravity, which is assumed to be constant.

Writing the geopotential in terms of the balance condition (9), as well as expanding the material derivative
gives

x
d �U
dp

1
@ðfwÞ
@t

1vw � r fwð Þ50; at p5pB;

where the horizontal advection of �U is zero because �U5�UðpÞ, the horizontal advection of fw is accom-
plished by vw only, and the vertical advection of f w has been neglected. These approximations are consis-
tent with the approximations used to develop the balance theory on the sphere. Using the approximation
of slowly varying f, the third term of the above equation can be rewritten as vw � frw. Because vw5k3rw
is perpendicular to rw; vw � frw50. The lower boundary condition becomes

x
d �U
dp

1
@ðfwÞ
@t

50: (25)

In order to apply the lower boundary condition, it will be convenient to rewrite it using the balanced vortic-
ity equation (10). This equation applies at all levels, including the lower boundary, and can be written as

@f
@t

1vw � rðf1f Þ2f
@x
@p

2k � r3F50: (26)

Multiplying (26) by –f, adding it to r2 of (25) and recognizing that d �U
dp 52 R�T

p , the lower boundary condition
can be written as

f 2 @x
@p

2
R�T
p
r2x5f vw � r f1fð Þ2f k � r3F;

or by noting that vw is nondivergent,
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f 2 @x
@p

2
R�T
p
r2x5fr � vw f1fð Þ

� �
2f k � r3F:

The global omega equation and its boundary conditions have now been defined and are repeated here.

Global Omega Equation and Boundary Conditions

R �C
p2
r2x1f 2 @

2x
@p2

5
@

@p
f vw � r f1fð Þ
� �

2r2 f vw � r
@w
@p

� �� 	
2
@

@p
f k � r3Fð Þ

or

R �C
p2
r2x1f 2 @

2x
@p2

522r � Q2fr � k3rað Þ2 @

@p
f k � r3Fð Þ (27)

x50 at p5pT (28a)

f 2 @x
@p

2
R�T
p
r2x5fr � vw f1fð Þ

� �
2f k � r3F at p5pB (28b)

3.3. Solution
Equation (27) with boundary conditions (28a) and (28b) will be solved using transform techniques—a nor-
mal mode transform in the vertical and a spherical harmonic transform in the horizontal. As this equation
will be solved on the sphere, only vertical boundary conditions are needed, as there are no lateral
boundaries.
3.3.1. Vertical Normal Mode Transform
A vertical normal mode transform is used to separate the vertical structure of the atmosphere from the hori-
zontal structure. The procedure used here follows that developed by Fulton and Schubert (1985), although
they performed the transform on equations involving u, v, and U. The forward and inverse transforms on x
are, respectively,

x‘ðk; lÞ5
ðpB

pT

x k; l; pð Þ dV‘
dp

dp1 x k; l; pð Þ p�T
�C

dV‘
dp

� 	
pB

; (29a)

and

xðk; l; pÞ5
X1
‘50

x‘ k; lð Þ c2
‘p2

R �C pB2pTð Þ
dV‘
dp

: (29b)

These two equations are derived in the Appendix A. The vertical structure function V‘5V‘ðpÞ is determined
by solving the Sturm-Liouville equation

d
dp

p2

R �C

dV‘
dp

� �
1

V‘
c2
‘

50; (30)

with boundary conditions

dV‘
dp

50 at p5pT (31)

and

p
dV‘
dp

1
�C
�T

V‘50 at p5pB; (32)

where c22
‘ is the eigenvalue. The vertical structure functions obey the orthonormality condition

1
pB2pT

ðpB

pT

V‘V‘0dp5
1 if ‘05‘

0 if ‘0 6¼ ‘:

(
(33)

The kernel of the vertical normal mode transforms for x, however, is dV‘
dp , which also obeys an orthonormality

condition, namely:
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c2
‘

pB2pT

ðpB

pT

p2

R �C

dV‘
dp

dV‘0

dp
dp1

p3�T

R �C
2

dV‘
dp

dV‘0

dp

� �
pB

" #
5

1 if ‘05‘

0 if ‘0 6¼ ‘:

(
(34)

The vertical transform of the global omega equation begins by multiplying (27) by p2

R �C
dV‘
dp and integrating

from pT to pB: ðpB

pT

r2x
dV‘
dp

dp1f 2
ðpB

pT

@2x
@p2

p2

R �C

dV‘
dp

dp5

ðpB

pT

p2

R �C

dV‘
dp

Fdp; (35)

where F5F k;l; pð Þ is one of the forms of the forcing (rhs) of (27). Evaluate each term on the left-hand side,
beginning with the first term ðpB

pT

r2x
dV‘
dp

dp:

If r2 x p�T
�C

dV‘
dp

� �
pB

2r2 x p�T
�C

dV‘
dp

� �
pB

50 is added, the result is

r2
ðpB

pT

x
dV‘
dp

dp1 x
p�T
�C

dV‘
dp

� �
pB

" #
2r2 x

p�T
�C

dV‘
dp

� �
pB

:

Use (29a) and the fact that in the second term only x is dependent on k and / to get

r2x‘2
dV‘
dp

p�T
�C
r2x

� �
pB

: (36)

Using integration by parts, the second term on the left-hand side of (35) becomes

f 2
ðpB

pT

@

@p
@x
@p

p2

R �C

dV‘
dp

� �
dp2

ðpB

pT

@x
@p

d
dp

p2

R �C

dV‘
dp

� �
dp

� 	
:

Evaluating the first integral and using (30) on the second gives

f 2 @x
@p

p2

R �C

dV‘
dp

� 	pB

pT

1

ðpB

pT

@x
@p

V‘
c2
‘

dp

 !
:

Using the boundary condition (31) on the first term and integrating by parts on the second term gives

f 2 @x
@p

p2

R �C

dV‘
dp

� �
pB

1

ðpB

pT

@

@p
x

V‘
c2
‘

� �
dp2

ðpB

pT

x
d

dp
V‘
c2
‘

� �
dp

" #

5f 2 @x
@p

p2

R �C

dV‘
dp

� �
pB

1 x
V‘
c2
‘

� �pB

pT

2

ðpB

pT

x
1
c2
‘

dV‘
dp

dp

" #
:

(37)

Using the boundary conditions (28a) and (32) gives

f 2 @x
@p

p2

R �C

dV‘
dp

� �
pB

2 x
p�T
�C

1
c2
‘

dV‘
dp

� �
pB

2
1
c2
‘

ðpB

pT

x
dV‘
dp

dp

" #

5f 2 @x
@p

p2

R �C

dV‘
dp

� �
pB

2
1
c2
‘

ðpB

pT

x
dV‘
dp

dp1 x
p�T
�C

dV‘
dp

� �
pB

" #( )
:

(38)

Finally, use (29a) to get

f 2 @x
@p

p2

R �C

dV‘
dp

� �
pB

2f 2 x‘

c2
‘

: (39)

Combining (36) and (39) with the right-hand side of (35) gives
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r2x‘2f 2 x‘

c2
‘

1f 2 @x
@p

p2

R�C

dV‘
dp

� �
pB

2
dV‘
dp

p�T
�C
r2x

� �
pB

5

ðpB

pT

p2

R �C

dV‘
dp

Fdp: (40)

Using the lower boundary condition f 2 @x
@p 2 R�T

p r2x5G k; l; pð Þ at p 5 pB (28b) and rearranging gives

r2x‘2
f 2

c2
‘

x‘5

ðpB

pT

p2

R �C

dV‘
dp

Fdp2
p2

R �C

dV‘
dp

G

� �
pB

:

If the Laplacian operator is expanded in terms of k and l and the right-hand side is multiplied by

15 pB2pT
c‘

� �2
c‘

pB2pT

� �2
, the result is

@2x‘

ð12l2Þ@k2 1
@

@l
ð12l2Þ @x‘

@l

� 	
2�‘l

2x‘5
a pB2pTð Þ

c‘

� 	2

F‘ðk; lÞ; (41)

where �‘54X2a2=c2
‘ is Lamb’s parameter and

F‘ðk; lÞ5
c‘

pB2pT

� �2 ðpB

pT

p2

R �C

dV‘
dp

Fdp2
p2

R �C

dV‘
dp

G

� �
pB

" #
:

In the next section, the spherical harmonic transform will be used to convert the partial differential equation
(41) into an algebraic system.
3.3.2. Spherical Harmonic Transform
The spherical harmonic transform consists of a Fourier transform in k and an associated Legendre transform
in l. Because of the variety in notations and normalizations used in the literature in conjunction with spheri-
cal harmonics, before proceeding with the derivation of the omega equation, the notations and normaliza-
tions used in this paper will be presented. The spherical harmonic transform pair will be given by

x‘mn5

ð1

21

ð2p

0
x‘ k; lð Þ Ym

n k; lð Þ
� ��

dkdl

and

x‘ k; lð Þ5
X1

m521

X1
n5jmj

x‘mnY m
n k; lð Þ;

where * denotes complex conjugation. The spherical harmonics, Ym
n k; lð Þ, are given by

Y m
n k; lð Þ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n11

4p
n2mð Þ!
n1mð Þ!

s
Pm

n lð ÞUm kð Þ;

where Um kð Þ5eimk is the Fourier component, and Pm
n lð Þ5 12l2ð Þ

m
2 dm

dlm
1

2n n!
dn

dln l221ð Þn
� �n o

are the associ-

ated Legendre functions, with the term in the braces the Legendre polynomials. The value m is the zonal
wavenumber and the value n is obtained by adding to jmj the number of meridional nodal lines, thus 21

< m <1 and n � jmj. The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n11

4p
n2mð Þ!
n1mð Þ!

q
is a normalization factor and can be divided between the

Fourier and associated Legendre components such that

�Um kð Þ5 1ffiffiffiffiffiffi
2p
p Um kð Þ (42)

and

�Pm
n lð Þ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n11

2
n2mð Þ!
n1mð Þ!

s
Pm

n lð Þ: (43)

This normalization for the associated Legendre functions is used by Belousov (1962). With these definitions,
the following orthonormality conditions hold:
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ð1

21

ð2p

0
Ym

n k; lð Þ
� �

Ym0
n0 k; lð Þ

� ��
dkdl5dmm0dnn0

ð2p

0

�Um kð Þ½ � �Um0 kð Þ½ ��dk5dmm0

ð1

21

�Pm
n lð Þ�Pm

n0 lð Þdl5dnn0 :

Using these normalizations, the Fourier transform pair and the associated Legendre transform pair are,
respectively,

x‘m lð Þ5
ð2p

0
x‘ k; lð Þ �Um kð Þ½ ��dk (44a)

x‘ k; lð Þ5
X1

m521
x‘m lð Þ�Um kð Þ (44b)

and

x‘mn5

ð1

21
x‘m lð Þ�Pm

n lð Þdl (45a)

x‘m lð Þ5
X1

n5jmj
x‘mn

�Pm
n lð Þ: (45b)

Because x‘ k; lð Þ is real valued, the spherical harmonic coefficients for m< 0 are the complex conjugates of
the spherical harmonic coefficients for m> 0. Thus, it is necessary to consider the Fourier and associated
Legendre transformations only for m � 0.

With the notation and normalizations defined, the derivation continues with the application of the forward
Fourier transform (44a) to the vertically transformed omega equation (41). The result is

d
dl

12l2
� 
 dx‘m

dl

� 	
2 �‘l

21
m2

12l2

� �
x‘m5

a pB2pTð Þ
c‘

� 	2

F‘m: (46)

Applying the forward associated Legendre transform (45a) to (46) gives

n n11ð Þx‘mn1�‘

ð1

21
x‘m lð Þl2�Pm

n lð Þdl52
a pB2pTð Þ

c‘

� 	2

F‘mn; (47)

where use is made of the fact that the normalized associated Legendre functions (as well as the associated
Legendre functions) are solutions to the differential equation

d
dl

12l2
� 
 d�Pm

n lð Þ
dl

� 	
1 n n11ð Þ2 m2

12l2

� 	
�Pm

n lð Þ50

over the interval 21 � l � 1. To get the integral
Ð 1
21 x‘m lð Þl2�Pm

n lð Þdl into a more workable form, use the
following recurrence relation for the normalized associated Legendre functions (Belousov, 1962):

�Pm
n lð Þ52am

n l�Pm
n21 lð Þ2bm

n
�Pm

n22 lð Þ; (48)

where

am
n 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 1

4

n22m2

s
and bm

n 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n11ð Þ n2m21ð Þ n1m21ð Þ

2n23ð Þ n22m2ð Þ

s
:

By substituting n 1 1 for n, equation (48) can be written as

l�Pm
n lð Þ5 1

2am
n11

� �
�Pm

n11 lð Þ1 bm
n11

2am
n11

� �
�Pm

n21 lð Þ: (49)

Multiplying by l gives
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l2�Pm
n lð Þ5 1

2am
n11

� �
l�Pm

n11 lð Þ1 bm
n11

2am
n11

� �
l�Pm

n21 lð Þ: (50)

Using (49) with n first replaced by n 1 1 and then with n replaced by n – 1, the factor of l outside the nor-
malized associated Legendre functions may be eliminated from the right-hand side of (50), giving

l2�Pm
n lð Þ5 1

2am
n11

� �
1

2am
n12

�Pm
n12 lð Þ1 bm

n12

2am
n12

�Pm
n lð Þ

� 	
1

bm
n11

2am
n11

� �
1

2am
n

�Pm
n lð Þ1 bm

n

2am
n

�Pm
n22 lð Þ

� 	
:

Combining the �Pm
n lð Þ terms gives

l2�Pm
n lð Þ5 bm

n bm
n11

4am
n am

n11

� �
�Pm

n22 lð Þ1 am
n bm

n121am
n12bm

n11

4am
n am

n11am
n12

� �
�Pm

n lð Þ1 1
4am

n11am
n12

� �
�Pm

n12 lð Þ: (51)

Mathematica, developed by Wolfram Research, can be used to simplify complicated coefficients such as
those on the right-hand side of (51). It found that with the introduction of three new variables, Amn, Bmn,

and Cmn, the coefficients can be greatly simplified. Defining Amn5n22m2, Bmn54n221, and Cmn5 Amn
Bmn

� �1
2

gives

bm
n bm

n11

4am
n am

n11
5CmnCmn215amn;

am
n bm

n121am
n12bm

n11

4am
n am

n11am
n12

5C2
mn111C2

mn5bmn;

and

1
4am

n11am
n12

5Cmn12Cmn115cmn:

Equation (51) can now be written as

l2�Pm
n lð Þ5amn

�Pm
n22 lð Þ1bmn

�Pm
n lð Þ1cmn

�Pm
n12 lð Þ;

which can be used in (47) to give

n n11ð Þx‘mn1�‘

ð1

21
x‘m lð Þ amn

�Pm
n22 lð Þ1bmn

�Pm
n lð Þ1cmn

�Pm
n12 lð Þ

� �
dl52

a pB2pTð Þ
c‘

� 	2

F‘mn:

Using (45a), the above relation can be written in the form

A‘;m;nx‘;m;n221B‘;m;nx‘;m;n1C‘;m;nx‘;m;n1252
a pB2pTð Þ

c‘

� 	2

F‘;m;n; (52)

where A‘;m;n5�‘am;n; B‘;m;n5n n11ð Þ1�‘bm;n, and C‘;m;n5�‘cm;n.

According to (52), the spherical harmonic coefficients for each vertical mode x‘;m;n are related to the spheri-
cal harmonic coefficients of the corresponding vertical mode of the forcing F‘;m;n, and are also coupled to
the spherical harmonic coefficients x‘;m;n12 and x‘;m;n22, resulting in a system of equations for each vertical
mode ‘ and each zonal mode m. The indices m and n take on the respective values of 0 � m <1 and
n � m. For computational purposes, however, an upper limit to the spherical harmonic coefficients must be
defined. Here triangular truncation at n 5 N is used. For the operations related to spherical harmonics, the
software package SPHEREPACK was used (Adams & Swarztrauber, 1999).

For a given vertical mode ‘ and zonal mode m, the system of equations for obtaining the spherical har-
monic coefficients of the global omega equation is given by:
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B‘;m;m 0 C‘;m;m 0 0 0 � � � 0

0 B‘;m;m11 0 C‘;m;m11 0 0 � � � 0

A‘;m;m12 0 B‘;m;m12 0 C‘;m;m12 0 � � � 0

� � � � � � � �

0 � � � 0 A‘;m;N22 0 B‘;m;N22 0 C‘;m;N22

0 � � � 0 0 A‘;m;N21 0 B‘;m;N21 0

0 � � � 0 0 0 A‘;m;N 0 B‘;m;N

2
666666666666666666664

3
777777777777777777775

x‘;m;m

x‘;m;m11

x‘;m;m12

�

x‘;m;N22

x‘;m;N21

x‘;m;N

2
666666666666666666664

3
777777777777777777775

52
a pB2pTð Þ

c‘

� 	2

F‘;m;m

F‘;m;m11

F‘;m;m12

�

F‘;m;N22

F‘;m;N21

F‘;m;N

2
666666666666666666664

3
777777777777777777775

:

(53)

Note that the number of equations in the system depends on m. As m increases from 0 to N, the number of
equations in the system decreases from N 1 1 to 1.

The reconstruction of x k;l; pð Þ from the spherical harmonic coefficients x‘;m;n is a three-step process. First,
the inverse associated Legendre transform (45b) is used to compute x‘m lð Þ. Next, the inverse Fourier trans-
form (44b) is used to get x‘ k; lð Þ. Finally, x‘ k;lð Þ is summed over ‘ according to the inverse vertical normal
mode transfer (29b) to achieve the solution x k; l; pð Þ.

3.4. The Inclusion of Diabatic Heating
The above derivation assumed an adiabatic atmosphere, an assumption commonly made for midlatitude
applications for which the vorticity and thermal advection terms are relatively large. In the Tropics, the con-
tribution to the forcing of x due to diabatic heating, primarily in the form of latent heat, can exceed the
contributions attributable to the vorticity and thermal advection terms. To include diabatic processes as an
additional forcing for large-scale vertical motion, the thermodynamic equation (8) is altered to

DT
Dt

2
�C
p

x5
J

cp
;

where J represents the diabatic heating and has units of J
kgs. Bringing J

cp
through the derivation of the global

omega equation, it is seen that the forcing for vertical motion due to diabatic heating enters as a Laplacian:

R�C
p2 r

2x1f 2 @
2x
@p2 522r � Q2fr � k3rað Þ2 @

@p
f k � r3Fð Þ2 R

cpp
r2J: (54)

In this case the Q form of the global omega equation is shown, but the diabatic heating term appears in
the same manner regardless of which omega equation is used. To include the effects of resolved-scale
latent heating, one form that J might take is given by Emanuel et al. (1987) in their study of slantwise moist
convection:

J5x
@h
@p

2
cm

cd

h
he

@he

@h

� �
; (55)

where h is the potential temperature, he is the equivalent potential temperature, cd is the dry adiabatic lapse
rate, and cm is the moist adiabatic lapse rate. Crandall et al. (2016) included this form of latent heating to
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derive a diabatic Q. They then compared and contrasted the diabatic Q with the traditional Q in the context
of a numerical simulation of a cold season extratropical cyclone. It was found that the difference in the forc-
ing due to the convergence of the traditional Q and the convergence of the diabatic Q was well correlated
with regions of heavier modeled precipitation.

The presence of x in (55) means that with the inclusion of the latent heating term, x is both the variable
for which equation (54) is solved as well as a part of the forcing. The typical manner for solving such equa-
tions is to use an iterative technique. Such is the approach given by Krishnamurti (1968).

3.5. Two Examples
Two examples of the use of the global omega equation are given in this section. The first is an extratropical
cyclone over the northeast Pacific Ocean, and the second is an African easterly wave over the eastern Atlan-
tic Ocean. In both cases, the solution to the global omega equation is compared to the solution of the
quasi-geostrophic omega equation as well as to x from the Global Forecast System (GFS) analysis.
3.5.1. Midlatitude Cyclone
The quasi-geostrophic omega equation is used extensively in the analysis of extratropical cyclones, and
applying the global omega equation to such a system provides a means by which the performance of the
technique can be judged. Martin (2006) examined two extratropical cyclones using an f-plane version of the
quasi-geostrophic omega equation. One of the cases was a rapidly deepening cyclone which occurred in
the northeast Pacific Ocean on 6–8 October 2004. The 700-hPa omega from the 0000 UTC 7 October GFS
analysis shows a pronounced couplet of rising and sinking motion (Figure 1). The upward vertical velocities
peak at 217 dPa s21 in the southwestern portion of the comma head, with an extension of lifting motion
to the southwest along the cold front, in agreement with the cloud shield observed by geostationary satel-
lite. Sinking motion is present to the west of the cloud shield with two maxima exceeding 5 dPa s21. The
larger of the two is well within the cold air behind the front, as evidenced by the existence of a large strato-
cumulus cloud field. The second maximum, at the tip of a protrusion of 3 dPa s21-subsiding air extending
to the northeast, is associated with the dry tongue, or dry slot, of the cyclone’s circulating airstreams
(Carlson, 1980).

Using the 0000 UTC 7 October 2004 GFS analysis on a 1	3 1	 horizontal grid with 21 vertical levels
from 1,000 to 100 hPa, the field of the global x was calculated for the cyclone using the divergence of Q
(Figure 2). Similar to the GFS vertical velocity, the global x at 700 hPa depicts a rising/sinking couplet which

Figure 1. The 700-hPa x from the 0000 UTC 7 October 2004 GFS analysis, overlaid on a 10.7 mm image from Geostation-
ary Operational Environmental Satellite-10. The field is contoured every 2 dPa s21, starting at 1 and 21 dPa s21, with
upward motions dashed and subsiding motions solid.
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is consistent with the cloud fields observed from satellite. In particular, the subsiding air seems to be partic-
ularly well captured by the global omega equation, with a maximum sinking motion in the cold air mass,
and an extension of the subsidence field into the dry slot, although the smaller maximum near the end of
the dry-slot airstream is not evident. The maximum upward omega is coincident with that of the GFS analy-
sis, but somewhat weaker (–13 dPa s21). An enhancement of x is evident along the southern tail of the
ascent region (i.e., the cold front), and is consistent with both enhanced values of the forcing 22r � Q along
a front and with reduced values of the coefficient f2 on the south side of the cyclone. It is not surprising,
however, that the upward motion near the cold front is not as narrow as in the GFS, as it has long been
known that an accurate depiction of fronts requires sophistication beyond the quasi-geostrophic equations,
such as semi-geostrophic theory (Hoskins, 1975).

Figure 2. Same as Figure 1, but for the 700-hPa global x.

Figure 3. Same as Figure 1, but for the 700-hPa quasi-geostrophic x.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS000992

DOSTALEK ET AL. GLOBAL OMEGA EQUATION 3060



As an additional comparison, the quasi-geostrophic omega equation
was also solved over the cyclone (Figure 3). For this calculation, the
same GFS analysis fields were used as for the global omega equation
and the display of the GFS vertical velocity, but the omega equation
was solved over a limited domain surrounding the cyclone. In this
case, the multigrid software package MUDPACK (Adams et al., 1992)
was used to solve the partial differential equation. The boundary con-
ditions on the edges of the domain, both lateral and vertical, were set
to x from the GFS analysis. As with the GFS x and the global x, the
quasi-geostrophic x displays a rising/sinking couplet of vertical
motion. The magnitudes are somewhat less, with a maximum upward
velocity of 29 dPa s21, just above half the GFS model value. The loca-
tion of this maximum does coincide with the locations of the maxi-
mum upward velocity of the other two fields. Similar to the global x,
the magnitude of the largest quasi-geostrophic x in the sinking
region matches that of the GFS analysis, but is shifted toward the cold
front and the center of the cyclone, and with a much less pronounced
dry slot.

Martin (2006) computed a similar balanced vertical velocity field using
successive overrelaxation to solve the quasi-geostrophic omega equa-
tion from the GFS output (Figure 4). As would be expected, the
strength of the rising (–9 dPa s21) and sinking (5 dPa s21) air corre-
spond most closely to the quasi-geostrophic solution. The shape of
the vertical velocity field best matches the quasi-geostrophic x as
well, including a less pronounced dry slot than in the global or GFS x.

Scatter plots (Figure 5) of x help to quantify the performance of the
two balanced models with respect to the GFS over the domain used for the midlatitude cyclone (1798W to
1258W and 358N to 658N). The quasi-geostrophic x and the global x both compare favorably to the GFS-
analyzed x, although both underestimated the strongest upward motions determined by the GFS. Overall,
however, x from the global balance model did match the GFS better—with a correlation coefficient of 0.78
compared to the quasi-geostrophic omega equation’s correlation coefficient of 0.69. The high correlation

Figure 4. The 700-hPa x calculated from the quasi-geostrophic equations
using successive overrelaxation, from Martin (2006). The ‘‘L’’ marks the position
of the surface low, and the fronts are drawn according to convention. Omega is
contoured every 2 dPa s21, starting at 1 and 21 dPa s21, with upward motions
shaded in dark gray and downward motion shaded in light gray. The unshaded
solid lines are the 900–500 hPa thickness, contoured every 4 dam. Courtesy of
the American Meteorological Society. Copyright 2006.

Figure 5. Scatter plots of 700-hPa x for the extratropical cyclone of 0000 UTC 7 October 2004 in the domain 1798W to
1258W and 358N to 658N, excluding boundary points. Plot (a) compares the quasi-geostrophic omega equation with the
GFS analysis, and plot (b) compares the global omega equation with the GFS analysis. The resulting correlation coefficient
is given in the lower right-hand corner of each plot.
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coefficients produced by both balanced models underscore the importance of adiabatic forcing on the
behavior of midlatitude systems.
3.5.2. Tropical Wave
The easterly wave that would eventually develop into Hurricane Bertha of the 2014 Atlantic hurricane sea-
son left the west coast of Africa on 24 July 2014, and by 26 July it was over the ocean and displayed the
classic ‘‘inverted V’’ pattern in the GFS 700-hPa height field (Figure 6). The accompanying vertical motion
field reveals much more fine-scale structure than in the midlatitude example discussed previously. This
feature is expected, as vertical velocity at low latitudes is much more dependent on the diabatic heating
associated with convection, a process which occurs on a smaller scale than the forcing associated with
the divergence of Q. The small scale is particularly pronounced in the convective cloud clusters of the
Intertropical Convergence Zone (ITCZ) to the south of the wave, as seen in the satellite imagery. A pattern
of vertical velocity within the tropical wave is nevertheless evident, with generally rising air in the western
portion of the wave and sinking motion to the east, in agreement with Baumhefner (1968), who noted
that pattern when examining an easterly wave in the Caribbean Sea using an omega equation based on
the nonlinear balance model of Krishnamurti (1968). The crest of the wave contains regions of both sink-
ing and rising motion, the latter extending north from the wave crest into the western extent of the ridge
to the north.

Due to the absence of diabatic heating, the field of vertical velocity associated with the global omega equa-
tion for this case (Figure 7) lacks the fine-scale structure of the GFS x. The large-scale rising and sinking
motions in the vicinity of the wave are consistent with the numerical model output. The rising on the west-
ern portion of the wave is less pronounced, however, and the overall magnitudes of both the rising and
sinking regions are smaller as well. The global x shows only rising motion in the wave crest, but is consis-
tent with the GFS analysis in that the upward motions extend into the western portions of the ridge to the
north.

As with the global x, the quasi-geostrophic x (Figure 8) is dominated by large-scale features, such as the
subsidence on the eastern portion of the wave. The western portion of the wave is dominated by upward
motion, which is actually more pronounced than that of the global omega equation. The crest of the wave
serves as a partition between these rising and sinking motions, with only a slight hint of the upward

Figure 6. The 700-hPa height and x as analyzed by the GFS for 0000 UTC 26 July 2014, overlaid on a Meteosat-10 10.8
mm image. Heights are contoured every 10 m and vertical motions contoured every 0.2 dPa s21, starting at 0.1 and 20.1
dPa s21, to 0.7 and 20.7 dPa s21, and then every 2 dPa s21 starting at 1 and 21 dPa s21. Solid contours indicate sinking
motion and dashed contours indicate rising motion.
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motions extending into the ridge to the north. The magnitudes of both the rising and sinking motions are
similar to the global x, that is, generally less than those calculated by the GFS model. Note also that the
magnitudes of x from both balanced systems in the Tropics are 1–2 orders of magnitude smaller than the
magnitudes of omega in the midlatitude case, again underscoring the importance of adiabatic motions in
the extratropics and diabatic processes at lower latitudes.

The overall performance of the two balanced omega equations in the region of the tropical wave and its
environment can be more quantitatively analyzed by again using scatter plots to compare the vertical
motions at 700 hPa with the GFS analysis. Compared to the extratropical cyclone, the tropical wave

Figure 8. As Figure 7, but with x given by the quasi-geostrophic omega equation.

Figure 7. As in Figure 6, but with x given by the global omega equation. The contour interval of x is every 0.2 dPa s21

starting at 0.1 and 20.1 dPa s21.
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occupies a smaller fraction of the domain over which the quasi-geostrophic omega was calculated (18N to
318N and 558W to 18W). In order to focus on the tropical wave, the domain used for the scatter plots was
limited to 108–258N and 158–458W. Using 108N as the southern boundary removes from consideration most
of the grid points dominated by convection along the ITCZ, which the global and quasi-geostrophic omega
equations will not be able to capture because their forcing is restricted to adiabatic processes.

The results are displayed in Figure 9. Immediately clear is the overall poorer fit between the balanced x
fields and the GFS values than in the midlatitude case. In particular, the global and quasi-geostrophic sys-
tems have difficulty replicating the GFS analysis for larger magnitudes of x (� 1 dPa s21 or � 21 dPa s21).
Vertical motions in these ranges likely correspond to updrafts and downdrafts produced by convection that
remained after the simplistic method to effect its removal was applied. For magnitudes of x less than 1 dPa
s21, the fit is better visually, and more of the global x values appear to lie along the 1:1 line than the x val-
ues produced by the quasi-geostrophic equation. This qualitative evaluation is confirmed by the computa-
tion of the correlation coefficients, 0.42 for the global x equation and 0.33 for the quasi-geostrophic x
equation.

4. Conclusions

A balanced system of equations, including its associated omega equation, has been derived for the entire
sphere. In the derivation, three key steps are taken. First, the horizontal wind is decomposed into a nondi-
vergent and an irrotational component instead of the geostrophic and ageostrophic components as used
in quasi-geostrophic theory. Second, the Coriolis parameter is assumed to be slowly varying with respect to
the latitudinal variation of the streamfunction defining the nondivergent flow. This assumption leads to a
balance between the geopotential and the streamfunction given by fw k; l; pð Þ5U k;l; pð Þ2�U pð Þ. Third,
when creating the atmosphere which contains a balance between the wind and mass fields, it is necessary
to begin by defining the streamfunction of the wind, and then compute the mass field in balance with it.
From the balance condition, it can be seen that this method is the only way to avoid a discontinuity at the
equator. Furthermore, Phillips (1958) found in the geostrophic context that it is more accurate to begin with
a wind field and from there compute the balanced mass field, than to begin with a mass field and from it
compute the balanced wind field. With these three steps, the derivation of a balanced system of equations
valid for the whole sphere proceeds in a manner similar to that used to derive the quasi-geostrophic set of
equations. Not surprisingly, the resulting set of equations is essentially the same in appearance as the
quasi-geostrophic equations.

Figure 9. As in Figure 5, but for the tropical wave of 0000 UTC 26 July 2014, with an analysis domain of 108N to 258N and
458W to 158W.
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From this new set of equations, the derivation of the global omega equation again follows just as in the
quasi-geostrophic case. The equation takes the form

R�C
p2
r2x1f 2 @

2x
@p2

5
@

@p
f vw � r f1fð Þ
� �

2r2 f vw � r
@w
@p

� �� 	
2
@

@p
f k � r3Fð Þ:

That is, the large-scale vertical motion associated with this balanced system of equations is forced by
the vertical derivative of vorticity advection by the nondivergent wind and the Laplacian of the advec-
tion of the temperature by the nondivergent wind. It is similar to the quasi-geostrophic omega equa-
tion except that horizontal advections are accomplished by the nondivergent wind instead of the
geostrophic wind, and that the Coriolis parameter is allowed its full variation. This variation is assumed
to be small with respect to the variation of the streamfunction however, meaning that the approxima-
tion breaks down as the meridional variations of the streamfunction decrease (sectoral harmonics). In
addition to this ‘‘traditional’’ form of the global omega equation, a Q form of the global omega equation
was derived, where Q takes a form similar to that associated with the quasi-geostrophic omega
equation.

In order to solve the global omega equation, a normal mode transform in the vertical and a spherical har-
monic transform in the horizontal were employed. This transformation results in a system of equations
for each vertical and zonal mode which is then solved to get the spherical harmonic coefficients. The
inverse Legendre, Fourier, and vertical normal mode transforms are then performed to arrive at the solu-
tion in physical space.

Two examples, an extratropical cyclone and an African easterly wave, provide a comparison among the
global omega equation, the quasi-geostrophic omega equation, and x computed by the GFS numerical
model. The comparisons demonstrate the well-known dominance of adiabatic forcing of vertical motion
in the midlatitudes and diabatic forcing in the Tropics. In the midlatitude case, the global omega equation
produced a vertical velocity field more consistent with the numerical model output than the quasi-
geostrophic omega equation, both by inspection of the vertical motion fields and by the generation of
scatter plots and the computation of the associated correlation coefficients. In the tropical wave case,
visual inspection was more ambiguous, as the vertical motion field of the GFS model was dominated by
the small-scale effects of convection. The quantitative assessment by the scatterplots and the correlation
coefficients did, however, suggest improved performance with the global omega equation over the
quasi-geostrophic omega equation.

The results presented in this work point to the global omega equation as broadly applicable and more
accurate than the quasi-geostrophic omega equation. Because it is valid over the entire globe, it can be
used to examine the vertical velocities forced by balanced flow at all latitudes (e.g., midlatitude and tropi-
cal cyclones), as well as systems covering large portions of the globe and are not dominated by sectoral
harmonics (e.g., jet streams). Only in the extratropics, however, can it be considered a reasonable proxy
for the actual omega, as it is in these regions that adiabatic motions typically dominate the forcing of the
vertical motion field.

Appendix A:: Orthonormality of dV‘
dp and the Vertical Transform Pair for x

In section 3, the equations governing the orthonormality of dV‘
dp (34) and the transform pair for x, (29a) and

(29b), were presented without derivation. In this appendix, each equation will be derived, starting with the
orthonormality condition on dV‘

dp .

A1. Orthonormality Condition on dV‘
dp

Fulton and Schubert (1985) demonstrate the orthonormality condition (33) obeyed by the structure func-
tion V‘ pð Þ, which is repeated here:

1
pB2pT

ðpB

pT

V‘V‘0dp5
1 if ‘05‘

0 if ‘0 6¼ ‘:

(

Using (30) to substitute for V‘ gives
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Evaluating the first integral and factoring out a minus sign gives
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Because dV‘
dp 50 at p 5 pT, the above equation can be written as
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Using V‘052
p�T
�C

dV‘0
dp at p 5 pB, the orthonormality condition on dV‘

dp is given by
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which is the same as (34).

A2. The Inverse Transform for x

In deriving the inverse transform for x, begin with the inverse transform of the components of the horizon-
tal wind, v k;l; pð Þ5

P1
‘50 v‘ k; lð ÞV‘ pð Þ (Fulton & Schubert, 1985), and use x k;l; pð Þ5

P1
‘50 x‘ k; lð ÞA‘ pð Þ,

where A‘ pð Þ is to be determined. Begin by inserting these equations into the continuity equation (3):
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Using the orthonormality condition on V‘, the continuity equation for each vertical mode may be written in
a form similar to (3), where x‘ k;lð Þ has the same units as x k;l; pð Þ:

r � v‘ k; lð Þ5 1
pB2pT

� �
x‘ k; lð Þ:

Looking further at dA‘ pð Þ
dp 52 V‘

pB2pT
, a substitution for V‘ from (30) gives
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An indefinite integral over p gives
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In order for x k; l; pð Þ5
P1

‘50 x‘ k;lð ÞA‘ pð Þ to remain bounded, it must be that C 5 0. Therefore, the inverse
transform for x is

xðk; l; pÞ5
X1
‘50
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‘p2

R �C pB2pTð Þ
dV‘
dp

; (A1)

which is the same as (29b).

A3. Derivation of the Forward Transform for x

To derive the forward transform of x, begin with the inverse transform (A1) applied at the lower boundary:
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Now multiply (A1) by dV‘0
dp and integrate from pT to pB, and multiply (A2) by p�T
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. Adding the two equa-
tions gives:
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From the orthonormality condition on dV‘
dp , the expression in the braces assumes one of two values:

1 if ‘5‘0

0 if ‘ 6¼ ‘0:

Using that result, the forward transform is given by

x‘ k; lð Þ5
ðpB

pT

x k; l; pð Þ dV‘
dp

dp1 x k; l; pð Þ p�T
�C

dV‘
dp

� 	
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which is the same as (29a).
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